§ 23.63

§23.57 and with paragraph (a) of this section, reduced at each point by a gradient of climb equal to—

- (1) 0.8 percent for two-engine airplanes:
- (2) 0.9 percent for three-engine airplanes; and
- (3) 1.0 percent for four-engine airplanes.
- (c) The prescribed reduction in climb gradient may be applied as an equivalent reduction in acceleration along that part of the takeoff flight path at which the airplane is accelerated in level flight.

[Amdt. 23-34, 52 FR 1827, Jan. 15, 1987]

§ 23.63 Climb: General.

- (a) Compliance with the requirements of $\S3.65$, 23.66, 23.67, 23.69, and 23.77 must be shown—
 - (1) Out of ground effect; and
- (2) At speeds that are not less than those at which compliance with the powerplant cooling requirements of §§ 23.1041 to 23.1047 has been demonstrated; and
- (3) Unless otherwise specified, with one engine inoperative, at a bank angle not exceeding 5 degrees.
- (b) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, compliance must be shown with \$23.65(a), \$23.67(a), where appropriate, and \$23.77(a) at maximum takeoff or landing weight, as appropriate, in a standard atmosphere.
- (c) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes in the normal, utility, and acrobatic category, compliance must be shown at weights as a function of airport altitude and ambient temperature, within the operational limits established for takeoff and landing, respectively, with—
- (1) Sections 23.65(b) and 23.67(b) (1) and (2), where appropriate, for takeoff, and
- (2) Section 23.67(b)(2), where appropriate, and §23.77(b), for landing.
- (d) For commuter category airplanes, compliance must be shown at weights as a function of airport altitude and ambient temperature within the oper-

ational limits established for takeoff and landing, respectively, with—

- (1) Sections 23.67(c)(1), 23.67(c)(2), and 23.67(c)(3) for takeoff; and
- (2) Sections 23.67(c)(3), 23.67(c)(4), and 23.77(c) for landing.

[Doc. No. 27807, 61 FR 5186, Feb. 9, 1996]

§ 23.65 Climb: All engines operating.

- (a) Each normal, utility, and acrobatic category reciprocating engine-powered airplane of 6,000 pounds or less maximum weight must have a steady climb gradient at sea level of at least 8.3 percent for landplanes or 6.7 percet for seaplanes and amphibians with—
- (1) Not more than maximum continuous power on each engine;
 - (2) The landing gear retracted;
- (3) The wing flaps in the takeoff position(s); and
- (4) A climb speed not less than the greater of 1.1 V_{MC} and 1.2 V_{S1} for multiengine airplanes and not less than 1.2 V_{S1} for single—engine airplanes.
- (b) Each normal, utility, and acrobatic category reciprocating engine-powered airplane of more than 6,000 pounds maximum weight and turbine engine-powered airplanes in the normal, utility, and acrobatic category must have a steady gradient of climb after takeoff of at least 4 percent with
 - (1) Take off power on each engine;
- (2) The landing gear extended, except that if the landing gear can be retracted in not more than sven seconds, the test may be conducted with the gear retracted;
- (3) The wing flaps in the takeoff position(s); and
- (4) A climb speed as specified in $\S23.65(a)(4)$.

[Doc. No. 27807, 61 FR 5186, Feb. 9, 1996]

§ 23.66 Takeoff climb: One-engine inoperative.

For normal, utility, and acrobatic category reciprocating engine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes in the normal, utility, and acrobatic category, the steady gradient of climb or descent must be determined at each weight, altitude, and ambient temperature within the operational limits established by the applicant with—